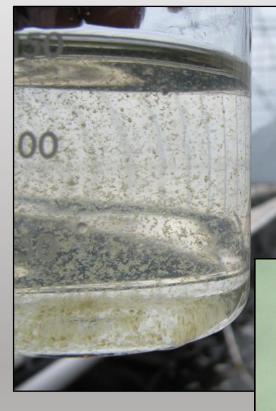
Integrating Biofloc Systems with Organic Plant Production and Renewable Energy at KSU's High Tunnel Complex

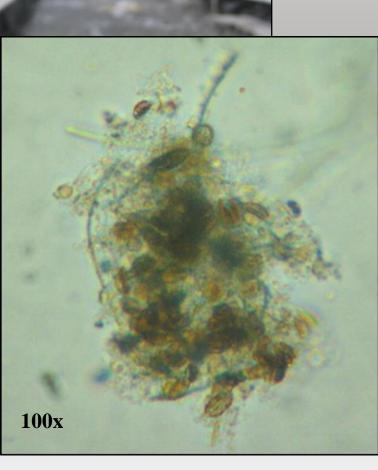
Andrew J. Ray*, Leo Fleckenstein, John O. Bailey Barksdale,

Adam Cecil, Nathan Kring

*Assistant Professor of Aquaculture Production

Aquaculture Division, Kentucky State University Land Grant Program


Biofloc Aquaculture Systems


- Low Water Exchange
 - Biosecurity
 - Temperature Control
 - Salt Conservation = Inland Brackish Operation
- High Animal Density
 - (Intensive → Superintensive)
 - Indoor/Greenhouse Operation
 - Climate Control
 - Diverse Regions

Biofloc Systems

- Recirculating Systems
 - No External Biofilter
- Biofloc Particles in the Water
 - Microbes, Algae (in light), Protists,
 Zooplankton, Feed Particles, Feces,
 Detritus (eg. Exoskeletons),
 Exopolymeric Substances
 - Cycle Nitrogen in the System
 - May Provide Supplemental Nutrition
 - Recycling Nutrients

High Tunnel Greenhouses

- Simple "Hoop Houses"
- Metal Ribs
- Wooden End Walls
- Plastic Sheeting

- No Heat
- No Automation Usually
- Extend the Growing Season
- Common for Fruits, Vegetables

Integrating Plant and Fish Production

- Diversify Products = Risk Mitigation
- Fish Nutrients → Soil Amendment
 - Sustainable Agriculture
- Fish Tanks = Heat Sinks
 - Diminish Temperature Swings
- Simple Fish Tanks
 - Low Cost Wood Frames
 - Rubber Liners
- Maximize Productivity of Tunnels
 - Warm/Cool Weather Crop Rotations

Simple, Wood-Framed Tanks

- ~ 2.7 x 5.5 m
- Plywood, insulation
- Steel Cables
 - Top and Bottom
- Sand Bottom
- Rubber Liner
- Rubber-faced Diffusers... up to 5 CFM
- 4 Tanks per High Tunnel
- Each High Tunnel ~ 30.5 x 10.0 m

USDA Organic

- KSU High Tunnel Complex is Certified
- "Natural" Farming
 - Conserve Natural Resources
 - Eliminate Synthetic Compounds
- Higher Value Plant Products
- No Standards for Aquaculture
- No Treated Wood
- Prevent Fish Water-Soil Contact

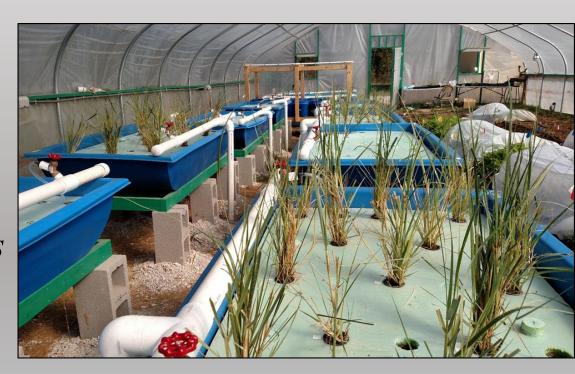
Photovoltaic Panels

- Photons → Electricity
- 8.4 kW System
- 30 Pole-Mounted Panels

- Should Produce Over 10,000 kWh/year
- Grid-Tied
 - Offsets Energy Usage at High Tunnels
 - Excess Energy Fed Into Grid

Teaching Tunnels

- At Two KY Schools
 - Versailles
 - 18 Months 6th Grade
 - Lexington
 - 6th Grade 12th Grade
- 8.5 x 12.2 m
- Solar Panel → Exhaust Fan
- Two RAS Inside
- Teaching Laboratories


Key Concepts (STEM)

- Physics/Technology
 - The Greenhouse Effect
 - PV Electricity
- Ecology
 - Photosynthesis
 - Fish Husbandry
 - Plant Propagation
 - Fish Effluent Fertilizer
- Integrated Food Production
 - Plants and Animals
 - Nutrient Efficiency

Additional/Future Work

- Warm/Cool Aquaculture Crops
- Maximize Production/Farmer Profits
 - Shrimp Growout
 - = Late Spring Early Fall
 - Large Mouth Bass *Micropterus salmoides* Nursery = Mid Fall – Mid Spring
- Decoupled Aquaponics
 - Seasonal Phytoremediation of Reused Aquaculture Effluent
 - Shrimp Biofloc Water
 - Salt-Tolerant Plants

Thank You!

- Supported by a Grant From the USDA,
 National Institute of Food and Agriculture's
 1890 Capacity Building Grant Program
- Thank you to the staff and students of the KSU Aquaculture Production Sciences Laboratory

- Stay tuned to the KSU Aquaculture Facebook Page and Website: http://www.ksuaquaculture.org/
- YouTube Video on the High Tunnels Project (more coming soon): https://www.youtube.com/watch?v=HuJyqM719wE